Integration of AQ data into AQM Efforts: How to motivate and promote AQ Actions and Engage Stakeholders

James J. Schauer, PhD, PE, MBA Director Wisconsin State Laboratory of Hygiene

Peterson-Rader-Hawnn Professor College of Engineering University of Wisconsin-Madison

Introduction

- Without monitoring data it is not feasible to manage air quality
- Well established that air quality monitoring is a powerful tool to engage students and community groups in data collection
- Monitoring data provides other important opportunities:
 - The basis for local impact assessment
 - The basis for assessing compliance
 - The basis for trend analysis
 - The basis for source impacts
 - The basis for accountability and policy evaluation

Local Impact Assessment

- The adverse effects of air pollution have been well documented on a scientific basis and on a global public health basis
- Local assessments of the impacts of air pollution on human health tend to resonate with community groups and policy makers
- Monitoring data is needed as input to local impact assessment for air quality

BenMAP-CE enables users to load their own data or use pre-loaded datasets for the U.S. and China, including

- Air quality data
- Demographic data
- Economic values
- Concentration-response relationships

Local Impact Assessment

- Many community groups and policy makers do not have the scientific background to understand the air pollution and concentrations and even Air Quality Index (AQI) Data
- Risk assessments that place air pollution in the context of health impacts or health impact costs are accessible to community groups and policy makers
- Demonstrated effective engagement tool

Compliance Assessment

- In some cities, the metric of air quality is visibility or haze (i.e. blue skies).
- Number of "blue sky days" is a poor metric for human health as pollution levels can have very large health impacts even if they are not visible
- The public and policy makers tend to be concerned about air quality during poor viability
- Air quality standards are based on pollutant concentrations and need to be measured to properly facilitate compliance

http://www.marketplace.org/topics/sustainability/we-used-bechina/what-would-your-city-look-beijings-air-smog-simulator

Compliance Monitoring

- Air pollution standards typically have regulations for daily average and annual average
- Most health effects assessment are based on annual average concentrations and the annual average metric is critically important for human health
- Human perception of air pollution focusses on poor days and cannot really assess annual average concentrations

Identification of potential source areas for elevated $PM_{2.5}$, nitrate and sulfate concentrations

Jongbae Heo^a, Jerome E. McGinnis^a, Benjamin de Foy^b, James J. Schauer^{a, c, *}

Monthly mean

Fig. 1. Monthly mean concentrations of $PM_{2.5}$ mass and frequency of $PM_{2.5}$ mass over 30 μg per cubic meter.

College of Engineering

Trend Analysis

- Effective air quality management needs to address changes in emissions and the drivers of emissions over time including population, vehicle miles traveled, energy use
- Reductions in emission factors can easily be outweighed by growth in source activity
- Trends in air pollution need to be studied carefully to properly assess progress in air quality management

Comparison of Growth Areas and Emissions, 1980-2015

https://www.epa.gov/transportation-air-pollution-and-climatechange/accomplishments-and-success-air-pollution-transportation15

PM Monitoring Approaches

- Two major categories of particulate matter monitoring:
 - Concentration Monitoring Critical for trend compliance, risk assessment, and trend analysis
 - Composition Monitoring Critical for understanding sources and source apportionment

Trend Analysis of Components

Identification of potential source areas for elevated PM_{2.5}, nitrate and sulfate concentrations

Jongbae Heo^a, Jerome E. McGinnis^a, Benjamin de Foy^b, James J. Schauer^{a, c, *}

^a Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA ^b Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO, USA ^c Wisonsin State Laboratory of Hygiene, Madison, WI, USA

Source Apportionment

- If source apportionment is implemented properly, it can be an effective tool to engage with air pollution source sectors
- Source apportionment presented as a "black box" and is not transparent can be divisive
- There are many examples of when source sectors are engaged with source apportionment studies and are provided with a compelling evidence of their impacts that they will be more open to regulation

Opportunities for Engagement

- Capacity building and collaboration for chemical speciation and source apportionment/data analysis
- Technology transfer for air pollution control technologies
- Technology innovation for low emission technologies and low carbon energy
- Training for best management practices for Air Quality Management – State and City Function in the USA

Source Apportionment and Engagement

- We need more from source apportionment than a nominal understanding of sources
 - "Knowing" the sources is insufficient to drive policies to mitigate air pollution
- Need source apportionment to facilitate engagement with sources and source sectors through transparency
- Need a robust understanding on seasonal and spatial distribution of source impacts
- Need to understand sources of episodic events and annual average source contributions
- Need source apportionment to assess the effectiveness of control programs - Accountability

Spatial Representativeness

Intra-urban spatial variability in wintertime street-level concentrations of multiple combustion-related air pollutants: The New York City Community Air Survey (NYCCAS)

Jane E. Clougherty¹, Iyad Kheirbek², Holger M. Eisl³, Zev Ross⁴, Grant Pezeshki², John E. Gorczynski³, Sarah Johnson², Steven Markowitz³, Daniel Kass² and Thomas Matte²

Figure 3. Map of estimated fine particles $(PM_{2.5})$ concentrations, winter 2008–2009.

Figure 4. Map of estimated black carbon (BC) concentrations, winter 2008–2009.

Understanding the sources and composition of the incremental excess of fine particles across multiple sampling locations in one air shed

Jerome E. McGinnis¹, Jongbae Heo¹, Michael R. Olson¹, Andrew P. Rutter¹, James J. Schauer^{1,2,*}

AIR QUALITY MANAGEMENT CYCLE

Key Message

- Monitoring data provides engagement opportunities:
 - Local impact assessment
 - Community Groups/Policy Makers
 - Assessing compliance
 - Community Groups/Policy Makers
 - Trend analysis
 - Source Sectors/ Policy Makers
 - Source Impact Analysis
 - Source Sectors/Policy Makers
 - Accountability and policy evaluation
 - All Stakeholders

