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A B S T R A C T

Given the millions of people suffering from air pollution, filling the air quality monitoring gap in low- and
middle-income countries has been recognized as a global challenge. To meet this challenge and make it work will
require private enterprise, multiple levels of government, international organizations, academia and civil society
to work together toward the common goal of characterizing, understanding better, and then reducing, the air
pollution that causes sickness and preventable death for millions of people each year in lowand middle-income
countries around the world. This article offers concrete next steps on how to make progress toward increasing air
quality monitoring using a combination of emerging technologies, adaptation to country-specific conditions, and
building capacity towards the development of lasting institutions.

Nothing is more fundamental to life than breathing. Yet for millions
of people around the world, particularly those in low- and middle-in-
come countries (LMICs), air pollution causes sickness and premature
death (Fig. 1). Most of the world's most populous – and most polluted –
cities are in low- and middle-income countries. Yet in many cases, ci-
tizens of LMICs are unaware of the severity of the risks of air pollution
or, if aware, lack the information needed to address the problem. Other
factors can exacerbate this situation, such as absent or unreliable
measurement data, limited access to data, and ineffective communica-
tion strategies. Citizens of LMICs may not know dirty air is making them
and their children sick or that there are actions they can take to protect
themselves. Levels of air pollution in LMIC cities often dwarf those in
high-income countries. Air pollution can be so pervasive that changing
behaviors to avoid exposure simply is not possible without sustained
national regulation to address air pollution. And in LMICs, weak or
absent monitoring programs and scientific institutions makes addres-
sing air pollution even more challenging.
Fine particulate matter (PM2.5) accounts for the majority of the

burden of disease attributable to ambient air pollution (Cohen et al.,
2017), and accordingly, those LMICs that do monitor air quality tend to

focus on either PM2.5 or PM10. However, there is growing concern re-
garding ground-level ozone concentrations, which are not frequently
monitored in LMICs. Governments and international organizations are
engaged in finding solutions to the health concerns associated with air
pollution, yet have been faced with a lack of high quality air quality
data in low- and middle-income countries on which to base policy de-
cision-making. To begin to fill these data gaps, in July 2017, the World
Bank and the United States Environmental Protection Agency convened
practitioners and experts from government, private sector, multilateral
organizations, and academia in LMICs and non-LMICs to explore po-
tential solutions. Meeting attendees collaborated on a discussion draft
“Filling the Gaps: Improving Measurement of Ambient Air Quality in Low
and Middle-Income Countries”.1

In Europe and North America, nearly all urban areas have a few
reference grade ambient air quality PM2.5 monitors, and large cities
have a dozen or more, with approximately one monitor per
100,000–600,000 residents (World Health Organization, 2018). These
monitors have provided the data needed to achieve robust policies and
substantial decreases in PM2.5 concentrations (Maas and Grennfelt,
2016). But across urban areas in Africa, the average is one monitor per
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4.5 million residents (Carvalho, 2016). When examining all of sub-Sa-
haran Africa, there is just 1 ground-level monitor per 15.9 million
people (WHO Global Ambient Air Quality Database, 2016). While
several mega-cities in LMICs have invested in monitoring networks that
measure air quality and provide data to the public, there are still
hundreds of LMIC cities worldwide with limited or no air quality
measurements. In some cases where air quality is measured, the data
may not be shared broadly with the public or the public advisories may
not be clearly communicated.
Based on the available data, recent reports estimate that air pollu-

tion in LMICs is dangerously high. In Africa alone, each year without
clean air means premature death for over 700,000 people at a cost of
over $200 billion (from indoor and outdoor air) (Roy, 2016). Globally,
the numbers are even more stark. A World Bank study found that the
global cost of ambient PM2.5 air pollution in 2016 was US$ 5.7 trillion,
or equivalent to 4.8% of global GDP (World Bank, forthcoming).
What if every city with a population over 100,000 in an LMIC,

currently without any PM2.5 monitor, had a reliable PM2.5 monitor
established and can make the data publicly available? What if people in
LMICs knew, every day, the level of pollution they would be breathing?
With approximately 1900 LMIC cities without PM2.5 monitoring (World
Health Organization, 2016) and approximating the cost to install and
maintain a regulatory-grade monitor at $100,000 USD per year, this
would equate to a rough estimate of $200 million USD per year, or
0.004% of the global cost of air pollution. This funding combined with
technology exchange, training, capacity building, and development of
locally relevant health messaging can help motivate the mitigation
strategies needed to reduce exposures and minimize the health risks
associated with air pollution. In this way, a concerted strategy by the
international community to expand air quality monitoring has great
potential to inform air quality policies leading to the reduction in
deaths attributable to PM2.5.

1. Growing recognition of the dangers of unhealthy air

When people consider health challenges in the developing world,
often the first issues that come to mind are malaria and HIV/AIDS. Yet
air pollution is responsible for more premature deaths every year than
these two diseases combined (Lelieveld et al., 2015; Global Burden of
Disease Collaborative Network, 2018). As pollutant emissions increase
in many LMICs, even the average citizen may begin to see that the air is
dirtier than it used to be. But they may not connect that observation to

changes in health. At the government level, there is a growing ac-
knowledgment of the problem. This is due in part to the visibility of
high pollution episodes and international air quality resolutions,2 and
also to public awareness efforts such as the United Nations' Breathe
Life3 and Clean Air Asia's Hairy Nose campaign.4 Reducing air pollution
is also a specific target of the United Nations Sustainable Development
Goal 11 which includes PM2.5 reporting requirements.

2. The air measurement challenge is fundamentally different in
LMICs

In the United States, state, tribal, and federal agencies built the
current air monitoring systems over the course of 50 years. They in-
vested millions of dollars in equipment, human capital, and institu-
tional frameworks to deploy and maintain monitoring stations and
process, analyze, and report the data. In addition, there is ready access
to electricity, telecommunications, and other infrastructure along with
a long-standing system of relatively well-staffed federal, state, local,
and tribal environmental organizations to ensure ongoing operation
and maintenance. In contrast, most LMICs with little or no existing air
quality data may have little or irregular electricity, limited or no la-
boratory or analytical capacity, small staff size with limited capacity,
and little or no financial resources to devote to air quality character-
ization activities. These factors, along with other considerations such as
monitoring goals, available data managements systems, legal autho-
rities and financing means there is no “one size fits all” approach to
building an air quality measurement system in LMICs. Determining the
best monitoring technology may be unique to each situation.
Another challenge is the difference in pollutants, their sources, and

the nature of the health effects. The Global Burden of Disease focuses on
the health impacts of PM2.5 and ozone. Globally, exposure to PM2.5
causes more than 10 times more deaths than ozone (Cohen et al., 2017)
and most LMICs report higher exposure to PM2.5 than ozone. In addition
to ozone and PM2.5, other studies have linked coarse particulate matter
(PM10) and nitrogen dioxide (NO2) to health effects in children, such as
reduced lung function (Gehring et al., 2013) and incidence of asthma
(Chen et al., 2015). Many of the largest cities in LMICs have high levels
of new cases of childhood asthma attributable to NO2 (Achakulwisut
et al., 2019). These studies are informed by annual average pollutant
concentrations. Measurement strategies that are consistent across time
and across different locations are critically needed to support health
assessment and to guide air quality policy decision-making to improve
human health. There is also a need for rapidly available measurements
that can inform current conditions and alert the public to take action
during air pollution episodes. While the efficacy of such programs has
been called into question (Chen et al., 2018), studies in Santiago, Chile
have reported reductions in air pollutant concentrations (Mullins and
Bharadwaj, 2014) and a study in Hong Kong reports reductions in
hospitalizations (Mason et al., 2019) due to public alerts. Part of the
success of these programs can be attributed to a quasi-experimental
design, where different approaches can be tested and iteratively im-
proved. Note that the program in Chile uses PM10 measurements and
the Hong Kong air quality index includes ozone, PM2.5, NO2, and sulfur
dioxide (SO2). Rapid development, changing emissions, and the need
for iterative experimentation means that LMICs need flexible mon-
itoring strategies that can address multiple pollutants.

Fig. 1. Deaths attributable to ambient fine particulate matter (PM2.5) by
country income as calculated by the World Health Organization Global Burden
of Disease report (World Health Organization, 2016). More than 90% of deaths
attributable to air pollution occur in low- and middle-income countries.

2 First United Nations Environment Assembly (UNEA) Resolution 7 on Air
Quality (https://www.unenvironment.org/resources/report/unea-1-resolution-
7-air-quality) and UNEA-3 Resolution on Preventing and reducing air pollution
to improve air quality globally (http://www.ccacoalition.org/en/resources/
preventing-and-reducing-air-pollution-improve-air-quality-globally-resolution-
adopted-2017).
3 http://breathelife2030.org/.
4 http://cleanairasia.org/node11316/.
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Given the substantial cost of measuring air quality using traditional
regulatory-grade monitors, and the rapidly evolving needs of LMICs,
there is increasing attention on new technologies – low cost sensor
devices and other sources of data, such as satellite-based measurements.
Exploring these newer technologies may provide an opportunity to
provide valuable information sooner and at a lower cost for areas where
deploying a full monitoring station is not feasible. The fundamental
question is whether these new technologies can offer LMICs a reliable
and credible path to “decision-grade” air quality data, capable of sup-
porting and enabling policies to improve air quality.

3. Leveraging emerging technologies: opportunities and
challenges

Much has been written about opportunities to skip over mid-20th
century technology on the path to modernity (Aker and Mbiti, 2010;
Tchouassi, 2012; Amankwah-Amoah, 2015). For example, in the de-
veloping world, mobile phones have become ubiquitous, while wired
phone networks are less common. Air quality monitoring may offer a
similar opportunity. Recent advances in low-cost sensors and satellite-
based remote sensing hold much promise for monitoring the levels of
PM2.5 over the majority of the earth's surface where little information is
currently available. Sensors are smaller, have lower power require-
ments, and can be easily deployed in nearly any setting. While his-
torically, air quality monitoring has relied on expert judgement to site
instruments to represent city-wide average concentrations or other
policy-relevant metrics, sensors are being deployed in large numbers,
often by citizens, saturating the landscape to capture the variability in
the air we breathe.
On the other end of the cost spectrum, a constellation of polar-or-

biting satellites carrying remote-sensing instruments is creating a global
view of air quality every day. Multiple space-based measurements and
global chemical transport models have been combined to create annual-
average estimates of PM2.5 at close to 10 km2 spatial resolution (van
Donkelaar et al., 2016). Both the underlying satellite-based observa-
tions and models used for estimating surface PM2.5 concentrations are
continuously improving. Launched in October 2017, TROPOMI is col-
lecting data at 7 km2. The Multi-Angle Imager for Aerosols (MAIA),
currently in development, is designed to also provide information on
the particle size distribution and chemical composition at 1 km spatial
resolution (Diner et al., 2018). Geo-stationary satellites are planned
that can provide information on air quality conditions throughout the
day, as opposed to a few times a day from the current polar-orbiting
satellites. Improved statistical methods have been developed (e.g.
Shaddick et al., 2017; Larkin et al., 2017) for combining space-based
observations with ground-based measurements, chemical transport
models, and land use data to estimate air quality conditions at finer
scales.
However, both low-cost sensors and satellite-based instruments es-

timate the PM2.5 concentration using optical measurements (light
scattering and/or absorption). Fine particulate matter is a complex
mixture of extremely small particles and liquid droplets composed of a
combination of dust, soot, salts, organic compounds, and water (US
EPA, 2018a). Each of these interact with light in different ways. Re-
lating the optical measurement to a mass concentration requires cali-
bration. Because the mixture of PM2.5 depends on the mixture of con-
tributing emission sources, particle size distribution, temperature, and
relative humidity, the calibration should be performed in conditions
where the measurements are made. For low-cost sensors, this means co-
locating with reliable measurement techniques with well-defined
quality assurance protocols. Calibration in the lab is not sufficient
(Castell et al., 2017;Rai et al., 2017). In the case of PM2.5 concentrations
estimated by satellite-based remote sensing, the accuracy improves in
areas where surface-based measurements are also available (Shaddick
et al., 2018). However, where high quality ground-level measurements
are absent, satellite estimates of ground level PM2.5 values should be

assigned a higher uncertainty (Alvarado et al., this issue).
The extent and frequency of calibration depends on the goals for the

measurements (Lewis et al., 2018). For raising awareness about air
quality, surveying an area to detect unpermitted emission sources,
identifying areas with exceptionally high levels of pollution in need of
further investigation, or other uses where rapid deployment is critical,
deployed sensors may only need to distinguish high concentrations
from low concentrations. For enforcing regulatory limits, legal re-
quirements may demand a higher level of certainty from the mea-
surements, for example duplicate instruments and frequent calibration.
Measurement artifacts may be addressed through recent advances in
calibration strategies, deploying machine learning approaches
(Zimmerman et al., 2018) and co-located measurements of multiple
pollutants (Kim et al., 2018); however, data processing needs to be
done with care to ensure the final data are useable for a particular
objective (Hagler et al., 2018). Despite these advances, many sensors
have limits to their accuracy and other measurement parameters
(Zamora et al., 2019), which should be considered depending on the
goals of the air quality monitoring network (Lewis et al., 2018; US EPA,
2018b).
Each approach to monitoring air quality has unique advantages and

when deployed together could potentially compensate for weaknesses.
This hybrid approach could deploy a few reference monitoring stations
(1–3) paired with a network of low-cost sensors (twenty or more). The
reference monitors would use well-tested measurement techniques,
including rigorous quality assurance protocols that include a known
quantification of measurement uncertainty. The network of low-cost
sensors could provide spatial and temporal coverage needed to quantify
exposure, while being calibrated using the quality-controlled data from
the reference monitors. The reference monitoring stations could be
further used to improve the accuracy of satellite-based remote sensing
data, extending the spatial coverage and filling in areas not measured
using sensors. Over time, it will be important to collect measurements
that can be used to identify emission sources, which could include
monitors for gases or PM chemical composition. For example, the in-
struments deployed as part of SPARTAN have filters that can be ana-
lyzed for mass, black carbon, water-soluble ions, and metals (Snider
et al., 2015), which in turn, could be used both to identify the con-
tribution of different emission sources and to further improve the in-
terpretation of the satellite-based remote sensing observations. If this
evolving, hybrid approach is piloted and successful, it would mean a
few regulatory-grade monitoring stations could be leveraged to better
characterize air quality in a wider area. This less labor-intensive and
less expensive approach might help LMICs cover a broader spatial area
and achieve air quality monitoring goals.
Historically, air quality engineering has focused on increasing the

reliability of instruments by developing consistent manufacturing
standards and rigorous quality assurance protocols. The proliferation of
sensor-based instruments poses a new engineering and quality assur-
ance challenges – how to incorporate data from a large number of less
reliable devices? New instrument siting protocols are needed. While
existing instrument siting protocols for a single reference monitor may
seek to find a location that represents average ambient conditions, a
network of sensors could seek to measure the maximum spatial and
temporal variability relevant to exposure. Spatial statistics methods are
needed to analyze data from sensor networks and translate it into in-
formation that could be used to inform air quality management goals.

4. Sustainable solutions require investment in human capital and
civil society

The pursuit of technical solutions must be paired with a sustained
commitment to continuous operation and institution building in LMICs.
First, continuously operating monitoring sites provide more useful in-
formation. Long-term data records are a more credible basis for deci-
sion-making, and the trend in air quality can demonstrate the success of
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an intervention or forecast the need for new approaches. However,
sustained monitoring is expensive and labor-intensive. To be successful,
it requires budget and staffing to build up the equivalent of environ-
mental protection agencies and local monitoring units. Sustained
monitoring requires training in operations and quality assurance pro-
tocols. In LMICs, it is often difficult to retain trained staff, especially if
the monitoring program lacks sustained and stable funding for per-
sonnel. The supply chains for replacement parts and calibration media
can break down if there is no prospect for continuous business.
Monitoring equipment that is properly sited and maintained is less
expensive to operate in the long run than re-starting equipment after
prolonged disuse. Sustained investment is needed to achieve success.
Public support for air monitoring can be an important driver for

sustained government investment and low-cost sensors can play an
important role in engaging the public. In LMICs without a history of air
pollution and public health issues, involving citizens in the measure-
ment and science is a powerful way to improve understanding, increase
awareness, and increase public support for monitoring and action (Ngo
et al., 2017; deSouza et al., 2017). Emerging low-cost sensors are more
compact, mobile, and accessible, which makes getting citizens involved
in air measurements more feasible. Community outreach and citizen
science projects are often designed to be short-lived, but by raising
public awareness, these projects can be an important part of building
support for sustained investment in air quality monitoring.

5. Building a system and making it work

What is “the answer” to the serious data, knowledge and action gap
around air pollution in LMICs? There is no single answer, which means
there are many opportunities. We know that air quality data, commu-
nicated thoughtfully, can be a powerful tool to inform the public about
the dangers of air pollution. We also know that it is not enough to
simply identify pollution levels, you must also be prepared with solu-
tions, even if those are just first steps on a long path to cleaner air.
Building an air quality management system may begin with an under-
standing of what is in the air to allow for individual short-term adap-
tation, but the ultimate goal is to breathe clean air by reducing emis-
sions.
The global air quality and health communities have an opportunity

to raise awareness and take steps to meet the challenge of air pollution
in LMICs. Here are some suggested concrete next steps on how to make
progress toward meeting that challenge:

• Provide clear, informed guidance to LMICs on purchasing and de-
ploying low-cost sensor devices, alongside a smaller number of
higher quality, higher cost devices. Together, these could provide a
wealth of data for decisionmakers in LMICs. For example, where can
LMICs find trusted, transparent information related to device data
ownership, device data quality over time in different environments,
device replacement frequency, device calibration, siting, equipment
costs, data management and analysis, and expenses for operations
and maintenance?
• Develop siting protocols and calibration strategies relevant to sensor
networks that support greater spatial density and unique calibration
needs.
• Building further on ongoing testing of air quality sensors in the
United States and Europe, conduct field testing in settings re-
presentative of LMIC conditions. What is the range of performance
for emerging sensor technologies under the diversity of environ-
mental and pollution conditions representative of LMICs?
• Design instruments that could continue to operate during times of
intermittent power and data connectivity.
• Continue to support further improvements to satellite-based remote
sensing and related data-fusion datasets to more accurately resolve
near-surface PM2.5 concentrations under the wide range of condi-
tions found in LMICs.

• Develop and share best practices in data management, considering
data post-processing, data integrity and transparency. Develop open
source software tools for archiving, interpreting, and commu-
nicating data from sensor networks.
• Invest in the responsible air quality staff within LMICs to develop
and maintain sustained air monitoring infrastructure. This includes
staff training, professional regional networks for sharing best prac-
tices, shared data platforms, and supply chain viability for equip-
ment and consumables.
• Support the development of lasting institutions for creating and
dispersing air quality information, including building public support
for sustained, credible monitoring. Foster the participation of LMIC
stakeholders in these institutions.
• Strongly encourage the public availability of air quality information
(Hasenkopf and Sereeter, 2016). As articulated in the mission of
OpenAQ, “air pollution is one of the greatest environmental health
issues of our time and opening up these data is a powerful step
forward in our collective progress to defeat it.5”

Given the millions of people suffering from air pollution, filling the
air quality monitoring gap in low- and middle-income countries has
been recognized as a global challenge. To meet this challenge and make
it work will require private enterprise, multiple levels of government,
international organizations, academia and civil society to work together
toward the common goal of characterizing, understanding better, and
then reducing, the air pollution that causes sickness and preventable
death for millions of people each year in low- and middle-income
countries around the world.
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